Admin Control Panel

New Post | Settings | Change Layout | Edit HTML | Moderate Comments | Sign Out O level A level A A1 A2 home private tuition physics chemistry mathematics maths biology trigonometry physics H2 H1 Science Score tutor tuition tuition tutoring tuition biology economics assessment exam exams exampapers exam papers NIE JC Secondary School Singapore Education tutor teach teacher school student agency

O lvl A Maths: Trigonometric Identity

Question from http://www.sgforums.com/forums/2297/topics/330176

Prove that tan x = cot x - 2 cot 2x and hence show that

2 tan 20 + 4 tan 40 + 8 tan 80 = 9(cot 10 - tan 10)

* all units are in degree form.

*************************

Answer:

RHS = cot x - 2 cot 2x
= cos x / sin x - 2 cos 2x /sin 2x
= cos x / sin x - 2 ([cos x]2 - [sin x]2) / 2 sin x cos x
= ( [cos x]2 - [cos x]2 + [sin x]2) / sin x cos x
= [sin x]2 / sin x cos x
= sin x / cos x
= tan x = LHS (proved)


Using tan x = cot x - 2 cot 2x
LHS = 2 tan 20 + 4 tan 40 + 8 tan 80
= 2 cot 20 - 4 cot 40 + 4 cot 40 - 8 cot 80 + 8 cot 80 - 16 cot 160
= 2 cot 20 - 16 cot 160

Note that tan 160 = -tan 20 since tan (180 - x) = -tan x
so 16 cot 160 = -16 cot 20

2 cot 20 - 16 cot 160
= 2 cot 20 + 16 cot 20
= 18 cot 20
= 9 (2 cot 20)

but, rearranging equation, 2 cot 2x = cot x - tan x

Hence, 9 (2 cot 20) = 9 (cot 10 - tan 10)

=> 2 tan 20 + 4 tan 40 + 8 tan 80 = 9 (cot 10 - tan 10)




Related Articles by Categories



Singapore's first free online short to
medium questions and solutions database



Related Posts with Thumbnails