Question from http://www.sgforums.com/forums/2297/topics/322475
1) If a2x-1 = b1-3y and a3x-1 = b2y-2, show that 13xy = 7x + 5y - 3.
2) Given that log5 x = 4 logx 5, calculate the possible values of x.
Answer:
1)
Log to base 10 on the equations
lg (a2x-1) = lg (b1-3y)
(2x - 1) lg a = (1 - 3y) lg b
(2x - 1) /(1 - 3y) = lg b / lg a----(1)
lg (a3x-1) = lg (b2y-2)
(3x - 1) lg a = (2y - 2) lg b
(3x-1) /(2y-2) = lg b / lg a----(2)
(1) = (2)
thus
(2x - 1) /(1 - 3y) = (3x-1) /(2y-2)
4xy + 2 - 4x- 2y = 3x + 3y- 1- 9xy
Hence 13xy = 5y + 7x - 3
2) log5 x = 4 logx 5
log5 x = 4 log5 5 / log5 x
[log5 x]2 = 4
log5 x = ±2
x=5-2 or 52
x= 1/25 or 25