Given that logp(x2y) = 8 and logp(y2 /x) = 6, evaluate
(i) logp(xy)
(ii) logp(y / x)
if y/x = 9, find the value of p, of x and of y.
*************************
Answer:
logp(x2y) = 8
===> logpx2 + logpy = 8
===> 2logpx + logpy = 8 ------------------------- (1)
logp(y2 /x) = 6
===> logpy2 - logp x = 6
===> 2logpy - logp x = 6 ------------------------- (2)
(1) + 2 * (2):
logpy + 4 logpy = 8 + 2(6)
5 logpy = 2o
logpy = 4 ------------------------------------------------------- (3)
Sub (3) into (1)
2 logpx + 4 = 8
logpx = 2 ------------------------------------------------------- (4)
(i) logp(xy)
= logpx + logpy
= 4 + 2
= 6
(ii) logp(y/x)
= logpy - logpx
= 4 - 2
= 2
If y/x = 9, from (ii)
logp9 = 2
p2 = 9
p = 3 or -3 (rej for log to be defined)
Thus, p = 3.
Thus, logpx = 2
x = p2
x = 9
logpy = 4
y = p4
y = 81