Admin Control Panel

New Post | Settings | Change Layout | Edit HTML | Moderate Comments | Sign Out O level A level A A1 A2 home private tuition physics chemistry mathematics maths biology trigonometry physics H2 H1 Science Score tutor tuition tuition tutoring tuition biology economics assessment exam exams exampapers exam papers NIE JC Secondary School Singapore Education tutor teach teacher school student agency

O lvl A Maths: Trigonometry

Question from http://sgforums.com/forums/2297/topics/344664

It is given that x and y are acute angles such that sin(x-y) = 4/5 and sin x cos y = 9/10.
Show that

a)
(i) sin(x+y) = 1
(ii) tan x = 9 tan y

b) using the answers from part (a), find the value of tan x.


*************************

Answer:

sin(x-y) = 4/5
sin x cos y - cos x sin y = 4/5
9/10 - cos x sin y = 4/5
cos x sin y = 1/10

a)
(i) sin (x + y)
= sin x cos y + cos x sin y
= 9/10 + 1/10
= 1 (shown)

(ii) (sin x cos y) / (cos x sin y) = (9/10) / (1/10)
(sin x / cos x) / (sin y / cos y) = 9
tan x / tan y = 9
tan x = 9 tan y (shown)


b) From sin (x+y) = 1, x + y = 90 degrees since x and y are acute.
Hence, tan (x+y) = infinity

tan (x+y) = (tan x + tan y) / (1 - tan x tan y)

===> tan x tan y = 1
===> tan y = 1 / tan x

Using a)(ii), tan x = 9 tan y
Hence,

tan x = 9 / tan x
tan² x = 9
tan x = sqrt (9)
tan x = 3 (since x is acute, tan is positive)



Related Articles by Categories



Singapore's first free online short to
medium questions and solutions database



Related Posts with Thumbnails