Admin Control Panel

New Post | Settings | Change Layout | Edit HTML | Moderate Comments | Sign Out O level A level A A1 A2 home private tuition physics chemistry mathematics maths biology trigonometry physics H2 H1 Science Score tutor tuition tuition tutoring tuition biology economics assessment exam exams exampapers exam papers NIE JC Secondary School Singapore Education tutor teach teacher school student agency

O lvl A Maths: Applications of Differentiation (Maxima and Minima)

RI 1999 Sec 4 Common Test Q11

ABCD is a trapezium where AB is parallel to DC, AB = 10 cm, AD = BC = 8 cm and ∡ADC ∡BCD = θ radians. Prove that the area of the trapezium, S cm² is given by S = 16 sin θ (4 cos θ + 5).

Hence, calculate the value of θ for which S has a stationary value. Determine whether this value of S is a maximum or minimum. (12 marks)

*************************

Answer:



Area of trapezium
= area of the 2 side triangles + area of centre rectangle
= 2 * (½ * 8 cos θ * 8 sin θ) + 10 * 8 sin θ
= 64 sin θ cos θ + 80 sin θ
= 16 sin θ (4 cos θ + 5)
(shown)


Differentiate S w.r.t. θ
\frac{dS}{d\theta }=16\sin \theta \left(-4\sin \theta \right)+\left(4\cos \theta +5 \right)16\cos \theta
\frac{dS}{d\theta }=-64\sin^{2} \theta+64\cos^{2} \theta+80\cos \theta
\frac{dS}{d\theta }=-64(1-\cos^{2} \theta)+64\cos^{2} \theta+80\cos \theta
\frac{dS}{d\theta }=-64+64\cos^{2} \theta+64\cos^{2} \theta+80\cos \theta
\frac{dS}{d\theta }=128\cos^{2} \theta+80\cos \theta -64

Set dS/dθ = 0 to find stationary value
128\cos^{2} \theta+80\cos \theta -64=0
8\cos^{2} \theta+5\cos \theta -4=0
cos θ = 0.4605823 or -1.0855823 (reject)
θ = 62.6°


\frac{d^{2}S}{d\theta ^{2}}=256\cos \theta \left(-\sin \theta\right)-5\sin \theta
When θ = 62.6°,
\frac{d^{2}S}{d\theta ^{2}}=-109<0

Hence, the value of S is a maximum.



Related Articles by Categories



Singapore's first free online short to
medium questions and solutions database



Related Posts with Thumbnails