Admin Control Panel

New Post | Settings | Change Layout | Edit HTML | Moderate Comments | Sign Out O level A level A A1 A2 home private tuition physics chemistry mathematics maths biology trigonometry physics H2 H1 Science Score tutor tuition tuition tutoring tuition biology economics assessment exam exams exampapers exam papers NIE JC Secondary School Singapore Education tutor teach teacher school student agency

O lvl A Maths: Trigonometry

This question is rather challenging for O level students, but it's fun :D

A, B and C are angles in a triangle.

Show that
(i) cosA + cosB + cosC = 1 + 4sin(A/2) sin(B/2) sin(C/2)
(ii) sin2A - sin2B + sin2C = 4 cos A sin B cos C
(iii) sin A cos B cos C + cos A sin B cos C + cos A cos B sin C = sin A sin B sin C.

*************************

Answer:

Some notes:
Look at your formula sheet. The following identities are what we have to use
1) sin A + sin B = 2 sin ½(A+B) cos ½(A-B)
2) sin A - sin B = 2 cos ½(A+B) sin ½(A-B)
3) cos A + cos B = 2 cos ½(A+B) cos ½(A-B)
4) cos A - cos B = - 2 sin ½(A+B) sin ½(A-B)

Also, the following identity is used
sin (90° - x) = cos x
cos (90° - x) = sin x



A, B and C are angles in a triangle => A + B + C = 180°

(i) RHS = 1 + 4sin(A/2) sin(B/2) sin(C/2)

Note: A/2 = 90° - (B + C)/2
B/2 = 90° - (A + C)/2
C/2 = 90° - (A + B)/2

Hence, RHS = 1 + 4 sin {90° - (B + C)/2} sin {90° - (A + C)/2} sin {90° - (A + B)/2}
= 1 + 4 cos (B + C)/2 cos (A + C)/2 cos (A + B)/2
= 1 + 2 cos (B + C)/2 [ cos (2A+B+C)/2 + cos (C-B)/2 ]
= 1 + cos (A+B+C) + cos (-2A/2) + cos (2C/2) + cos (2B/2)
= 1 - 1 + cos A + cos B + cos C
= cos A + cos B + cos C
= LHS (proved)


(ii) LHS = sin2A - sin2B + sin2C
= 2 cos (A+B) sin (A-B) + 2 sin C cos C
= 2 cos (180° - C) sin (A-B) + 2 sin (180° - (A+B) ) cos C
= - 2 cos C ( sin (A-B) - sin (A+B) )
= - 2 cos C ( 2 cos A sin (-B) )
= 4 cos A sin B cos C (shown)


(iii) sin(A+B+C) = sin 180° = 0

Using the identity (or expanding yourself)
sin(A+B+C) = sin A cos B cos C + cos A sin B cos C + cos A cos B sin C - sin A sin B sin C

sin A cos B cos C + cos A sin B cos C + cos A cos B sin C = sin(A+B+C) + sin A sin B sin C

Thus, sin A cos B cos C + cos A sin B cos C + cos A cos B sin C = sin A sin B sin C (shown)



Related Articles by Categories



Singapore's first free online short to
medium questions and solutions database



Related Posts with Thumbnails