Admin Control Panel

New Post | Settings | Change Layout | Edit HTML | Moderate Comments | Sign Out O level A level A A1 A2 home private tuition physics chemistry mathematics maths biology trigonometry physics H2 H1 Science Score tutor tuition tuition tutoring tuition biology economics assessment exam exams exampapers exam papers NIE JC Secondary School Singapore Education tutor teach teacher school student agency

O lvl A Maths: Trigonometric Identity

Prove the following identities

1) (sin A + sin 3A + sin 5A) / cos 3A = tan3A (2 cos 2A + 1)
2) sin² 5X - sin² 3X = sin 8X sin 2X
3) cos 8A sin 2A + sin 5A cos A = sin 7A cos 3A

*************************

Answer:

1)
LHS = ( sin A + sin 3A + sin 5A ) / cos 3A
= (sin 3A + 2 sin 3A cos 2A ) / cos 3A => sin A + sin 5A = 2 sin 3A cos 2A
= sin 3A (1 + 2 cos 2A) / cos 3A
= tan3A(2cos2A + 1)
= RHS (shown)

2)
LHS = sin² 5x - sin² 3x
= ½ (1 - cos 10x) - ½(1 - cos 6x) => because cos 10x = 1 - 2 sin² 5x and cos 6x = 1 - 2 sin² 3x
= ½(cos 6x - cos 10x)
= ½( -2 sin (8x) sin (-2x) )
= sin 8x sin 2x
= RHS (shown)

3)
LHS = cos8A sin2A + sin5A cosA
= ½ (2 cos 8A sin 2A) + ½ (2 sin 5A cos A)
= ½ (sin 10A - sin 6A) + ½(sin 6A + sin 4A)
= ½ (sin 10A + sin 4A)
= ½ (2 sin 7A cos 3A)
= sin 7A cos 3A
= RHS (shown)





Related Articles by Categories



Singapore's first free online short to
medium questions and solutions database



Related Posts with Thumbnails