From http://www.sgforums.com/forums/2297/topics/332604 courtesy of Ahm97sic
(1) Evaluate logn 9 / logn 4
(2) Given that zy = 2[log2 (z + x)], show that z = x / (y-1)
*************************
Answer:
(1)
logn 9 / logn 4
= (lg 9 / lg n) / (lg 4 / lg n)
= lg 9 / lg 4
= (2 * lg 3) / (2 * lg 2)
= lg 3 / lg 2
= 1.585
(2)
zy = 2[log2 (z + x)]
zy = z + x ===> 2[log2 x] = x, or n[logn x] = x
zy - z = x
z(y - 1) = x
z = x/(y - 1) (shown)